- Teacher: Lidia Harutyunova
ԱՌԱՐԿԱՅԱԿԱՆ ՆԿԱՐԱԳԻՐ
ՀՀ ԳԱԱ
ԳԻՏԱԿՐԹԱԿԱՆ ՄԻՋԱԶԳԱՅԻՆ ԿԵՆՏՐՈՆ
ԱՌԱՐԿԱՅԱԿԱՆ ՆԿԱՐԱԳԻՐ
ԱՌԱՐԿԱՅԻ ԱՆՎԱՆՈՒՄ |
|
Բարդ համակարգերի մոդելավորում |
|
|
|
ԱՌԱՐԿԱՅԻ ԴԱՍԻՉ |
09/M16 |
|
|
||
ՄԱՍՆԱԳԻՏԱԿԱՆ ԿՐԹԱԿԱՆ ԾՐԱԳԻՐ (ՄԿԾ) |
|
Ինֆորմատիկա և հաշվողական տեխնիկա
|
|
||
ԱՄԲԻՈՆ § մասնաշենք/սենյակ § հեռախոս § էլ հասցե § Web կայք
|
|
Ինֆորմատիկա և հաշվողական տեխնիկա ԻԱՊԻ |
|
|
|
ՀԵՂԻՆԱԿ/ՆԵՐ |
Սահակյան Վլադիմիր |
|
|
|
|
ՈՒՍ.ՏԱՐԻ/ԿԻՍԱՄՅԱԿ |
2022-2024 2-րդ կիսամյակ |
ԿՐԵԴԻՏՆԵՐ |
|
4 |
|
|
|
ԴԱՍԱԺԱՄԵՐԻ ԲԱՇԽՈՒՄ |
Ընդ. 120 ժամ, լսարան. 12 ժամ, ինքն. 108ժամ |
|
|
|
|
ՆԱԽԱՊԱՅՄԱՆ |
Հավանակության տեսության հիմքային գիտելիքներ /պատահույթներ և պատահական մեծություններ, բաշխման և խտության ֆունկցիաներ/, վիճակագրական տեսության հիմքային գիտելիքներ /միջին, վարկածների ստուգում/, ծրագրավորում /մակրոսներով կամ ծրագրավորման լեզվով/ |
|
|
|
|
ՀԱՄԱՌՈՏ ԲՈՎԱՆԴԱԿՈՒԹՅՈՒՆ |
Ժամանակակից տեղեկատվական տեխնոլոգիաները թույլ են տալիս նախագծման փուլում իրականացնել արագագործ հաշվողական համակարգերի միջոցով բարդ համակարգերի մոդելավորում։ Այդ ճանապահով հնարավոր է հետազոտել նախագծվող համակարգերի պարամետրերը և վարքագիծը տարբեր հնարավոր պայմանների ազդեցության տակ։ Դասընթացում նախատեսում է ծանոթացնել ժամանակակից մոդելավորման տեսական և գործնական մեթոդներին, ուսումնասիրված մաթեմատիկական մոդելների կիրառմամբ։
|
|
ՆՊԱՏԱԿԸ
ԵՎ ԽՆԴԻՐՆԵՐ
|
Մագիստրանտներին ծանոթացնել մոդելավորման սկզբունքներին, բարդ համակարգերի հետազոտման և մոդելավորման տեսությանը, գործնական մեթոդներին և մոդելավորման արդյունքների օգտագործմանը
Բարդ համակարգերի հետազոտման մեթոդների ուսումնասիրություն, համակարգից մոդելին անցման եղանակների տիրապետում, պատահական մեծությունների և պրոցեսների օգտագործում բարդ համակարգերի ուսումնասիրության համար, զանգվածային համակարգերի մոդելների կիրառություն։ |
|
ԿՐԹԱԿԱՆ ԾՐԱԳՐԻ ՄԱՍ ՀԱՆԴԻՍԱՑՈՂ ԵԼՔԱՅԻՆ ՎԵՐՋՆԱՐԴՅՈՒՆՔԸ (1 նախադասությամբ) |
|
Հետազոտել և մոդելավորել իրական համակարգ, կազմել նրա մոդելավորման ալգորիթմը և ծրագիրը։ |
ՎԵՐՋՆԱՐԴՅՈՒՆՔՆԵՐ
1. Իմանա.
2. Կարողանա.
|
|
Բարդ համակարգերի ուսումնասիրման, մաթեմատիկական մոդելների ստեղծման և իրականացման, մոդելավորման արդյունքների մեկնաբանման մեթոդներ։
Հետազոտել բարդ համակարգեր նրանց մաթեմատիկական մոդելներ ստեղծելու նպատակով, ստեղծել ստացված մոդելների ծրագրային իրականացում, կատարել հաշվողական համակարգերի միջոցով փորձեր և մեկնաբանել ստացված արդյունքները։
Մոդելավորման եղանակներին, ստոխաստիկ մոդելավորման մեթոդին, հայտնի հետազոտված մոդելներին և նրանց օգտագործման եղանակներին բարդ համակարգեր հետազոտման ընթացքում։
|
ԳՐԱԿԱՆՈՒԹՅՈՒՆ |
|
|
Հիմնական
|
|
1. Бусленко Н.П., Моделирование сложных систем - М.:Наука, 1978 2. Бусленко В.Н. Автоматизация имитационного моделирования сложных систем - М.:Наука, 1977 3. Советов Б.Я., Яковлев С.А.Моделирование систем: Учеб. Для вузов – 3-е изд., перераб. и доп. – М.: Высш. шк., 2001, 343 с. 4. Шеннон Р. Имитационное моделирование систем - искусство и наука. - М., 1978 5. Ермаков С.М. Метод Монте-Карло и смежные вопросы, Наука, 1971 6. Клейнрок, Л. Вычислительные системы с очередями – М. : Мир, 1979. – 597 с. 7. Гнеденко, Даниелян и др. Приоритетные системы массового обслуживания |
Լրացուցիչ
|
|
1. Brodskii Y. I., Tokarev V. V. Fundamentals of simulation for complex systems. //Encyclopedia of Life Support Systems (EOLSS), Oxford, EOLSS Publishers Co. Ltd., 2002. 2. Kuhl F., Weatherly R., Dahmann J. Creating Computer Simulation Systems: An Introduction to the High Level Architecture NY: Prentice Hall PTR, 1999. – 212р. 3. Leonard Kleinrock, “Queueing Systems Volume I: Theory”, New York: Wiley, 1975-1976 4. http://economy.mari.ru/test/lect2/lec1.html Введение в моделирование 5. http://economy.mari.ru/test/lect2/lec11.html Имитационное моделирование 6. Клейнрок, Л. Теория массового обслуживания : пер. с англ.– М. : Машиностроение, 1979. – 432 с. 7. Боровков, А. А. Асимптотические методы в теории массового обслуживания – М. : Наука, 1980. – 381 с. 8. Ward, A. R. A diffusion approximation for a GI/G/1 queue with balking or reneging / A. R. Ward, P. W. Glinn // Queueing Systems. – 2005. – V. 50. – № 4. – Р. 371–400. 9. Тихонов, В. И. Марковские процессы / В. И. Тихонов, М. А. Миронов. – М. : Советское радио, 1977. – 488 с. 10. Тарасов, В. Н. Компьютерное моделирование вычислительных систем. |
ԳՆԱՀԱՏՄԱՆ ԲԱՂԱԴՐԻՉՆԵՐ ԵՎ ԿՇԻՌ |
|
Բաղադրիչ 1 – 10% (հաճախում, միչև 2 միավոր) Բաղադրիչ 2- 20% (ընթացիկ 1, միչև 4 միավոր ) Բաղադրիչ 3- 20% (ընթացիկ 2, միչև 4 միավոր) Բաղադրիչ 4- 50% (եզրափակիչ, միչև 10 միավոր) |
ԳՆԱՀԱՏՄԱՆ ՍԱՆԴՂԱԿ |
|
Գնահատականի պաշտոնական թվային համարժեքը |
Գնահատման ավանդական եղանակը |
18 - 20 |
Գերազանց |
||
13 - 17 |
լավ |
||
8 - 12 |
բավարար |
||
0 - 7 |
անբավարար |
||
7.5 - 20 |
ստուգված |
||
< 7.5 |
չստուգված |
||
ԳՆԱՀԱՏՄԱՆ ՉԱՓԱՆԻՇՆԵՐ/ ՄԵԹՈԴՆԵՐ |
|
1-ին միջանկյալ քննություն - 0 - 4 2-րդ միջանկյալ քննություն - 0 - 4 Եզրափակիչ քննություն – 10 Դասերի մասնակցություն և ակտիվություն - 2 |
|
ԱՅԼ ՏԵՂԵԿՈՒԹՅՈՒՆՆԵՐ |
|
Աշխատանքը պետք է պարունակի ալգորիթմական լուխումներ, իրականացման մաս և արդյունքների վերլուծություն
Նախընտրելի տարբերակ՝ համակարգչի օգտագործումը |
ԱՌԱՐԿԱՅԻ ԹԵՄԱՏԻԿ ՏՐՈՀՈՒՄ
N |
Թեմա |
Պարապմունքի տիպը Ժամերի թիվը
|
||
դասախոսություն
|
սեմինար, գոծնական |
ինքնուրույն
|
||
Թեմա 1 |
Գաղափար բարդ համակարգի և նրանց հետազոտման մեթոդների մասին։ |
1 |
0 |
6 |
Թեմա 2 |
Իմիտացիոն և անալիտիկ մոդելավորումներ։ |
1 |
0 |
4 |
Թեմա 3 |
1 |
0 |
4 |
|
Թեմա 4 |
Կեղծ պատահական մեծություններ |
0 |
1 |
10 |
Թեմա 5 |
Անկախ և կախյալ պատահույթներ։ |
1 |
0 |
10 |
Թեմա 6 |
Պատահույթների հոսքերի մոդելավորում։ |
0 |
1 |
12 |
Թեմա 7 |
0 |
1 |
12 |
|
Թեմա 8 |
1 |
0 |
12 |
|
Թեմա 9 |
Մարկովյան պրոցեսների և շղթաների մոդելավորում։ |
0 |
1 |
12 |
Թեմա 10 |
Զանգվածային սպասարկման համակարգերի նկարագրեր։ |
1 |
0 |
12 |
Թեմա 11 |
Զանգվածային սպասարկման համակարգերի սպասարկման կարգեր և իրականացման մոդելներ |
0 |
1 |
12 |
Թեմա 12 |
Միահոսք զանգվածային համակարգերի մոդելավորում։ |
0 |
1 |
12 |
|
Ընդամենը` |
6 |
6 |
118 |
120 ժամ 4 կրեդիտ
- Teacher: Vladimir Sahakyan
- Teacher: Vilik Karakhanyan